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Improving Chen and Han’s Algorithm on the Discrete
Geodesic Problem

SHI-QING XIN and GUO-JIN WANG

Zhejiang University, PR China

The computation of geodesic distances or paths between two points on triangulated meshes is a common operation in many computer graphics applications. In
this article, we present an exact algorithm for the single-source all-vertices shortest path problem.

Mitchell et al. [1987] proposed an O(n2 log n) method (MMP), based on Dijkstra’s algorithm, where n is the complexity of the polyhedral surface. Then,
Chen and Han [1990] (CH) improved the running time to O(n2). Interestingly Surazhsky et al. [2005] provided experimental evidence demonstrating that the
MMP algorithm runs many times faster, in practice, than the CH algorithm.

The CH algorithm encodes the structure of the set of shortest paths using a set of windows on the edges of the polyhedron. Our experiments showed that
in many examples over 99% of the windows created by the CH algorithm are of no use to define a shortest path. So this article proposes to improve the CH
algorithm by two separate techniques. One is to filter out useless windows using the current estimates of the distances to the vertices, the other is to maintain a
priority queue like that achieved in Dijkstra’s algorithm. Our experimental results suggest that the improved CH algorithm, in spite of an O(n2 log n) asymptotic
time complexity, greatly outperforms the original CH algorithm in both time and space. Furthermore, it generally runs faster than the MMP algorithm and uses
considerably less space.
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1. INTRODUCTION

The discrete geodesic problem is to determine the shortest path
between two points s and t on a polyhedral surface S. It arises natu-
rally in applications such as robotics, motion planning, geographic
information systems, and navigation [Agarwal et al. 2000; Sethian
1999], and is an important topic in computational geometry. It is also
central to computer graphics because the computation of geodesic
paths is a common operation in many graphics problems [Surazhsky
et al. 2005]. For example, cutting a mesh into several charts [Sander
et al. 2003; Zhou et al. 2004] and establishing a surface distance
metric [Zigelman et al. 2002; Peyré and Cohen 2005] often involve
computation of shortest paths.

The “single source, all destinations” shortest path problem is
to compute a data structure that allows the shortest path from
the source to any destination point on the surface to be reported
quickly. There are many exact algorithms for this problem. Sharir
and Schorr [1986] were the first experimentalists to present a poly-
nomial algorithm of time O(n3 log n), although their algorithm only
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applies to a convex polytope, where n is the complexity of the sur-
face. The time complexity was subsequently improved by Mount
[1984] to O(n2 log n). For an arbitrary polyhedral surface, Mitchell
et al. [1987] (MMP) gave an O(n2 log n) algorithm, which inherits
the paradigm of Dijkstra’s [1959] algorithm. Later, Chen and Han
[1990] (CH) proposed an O(n2) algorithm based on a key observa-
tion of “one angle, one split.” (Also, Kapoor [1999] announced a
further improvement, but his proof has not yet been accepted by the
research community.)

The CH algorithm consists of two phases. In the first phase, the
shortest path from the source to each vertex is computed, along with
a set of windows encoding information about the shortest paths from
the source to points on the edges. In the second phase, the windows
are used to compute a decomposition of the polyhedral surface,
with which a shortest path to any destination can be reported in
O(log n) time. For most applications in computer graphics, when
the input mesh is composed of well-shaped triangles, it is sufficient
to compute the shortest path to each vertex, making the second phase
unnecessary. In this article we focus on the first phase of the CH
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algorithm: the “single source, all vertices” shortest path problem.
For a polyhedral surface with many long, thin triangles, we suggest
storing all the windows that possibly determine a shortest path rather
than throwing away those one-child windows, although this requires
more space. Finally, for the destination point p, lying in a face
interior, we consider all windows on the three edges bounding the
face, and choose the window that provides the shortest distance to
point p. This method comes from Surazhsky et al. [2005].

In fact, the discrete geodesic problem has many versions such
as “single source, single destination” [Hershberger and Suri 1995;
Kanai and Suzuki 2000; Pham-Trong et al. 2001; Morera et al. 2005;
Polthier and Schmies 2006; Xin and Wang 2007], “single source,
all destinations” [Mount 1984; Sharir and Schorr 1986; Mitchell
et al. 1987; Chen and Han 1990; Agarwal et al. 1997b; Kimmel and
Sethian 1998; Novotni and Klein 2002; Surazhsky et al. 2005] and
“all pair” [Varadarajan and Agarwal 1997; Agarwal et al. 1997a;
Har-Peled 1999a, 1999b; Agarwal et al. 2000; Aleksandrov et al.
2003]; see Mitchell [2000], Aleksandrov et al. [2003], and Mitchell
and Sharir [2004] for a survey.

Kaneva and O’Rourke [2000] provided experimental results on
the CH algorithm. However it should be noted that their implemen-
tation, as well as ours, only implements the first phase of Chen
and Han’s algorithm. Surazhsky et al. [2005] implemented the first
phase of the MMP algorithm and induced an approximation algo-
rithm at the same time. All the experimental results demonstrate that
the MMP algorithm, of an O(n2 log n) complexity, runs many times
faster than the O(n2)-time CH algorithm. In contrast, the weakness
of the CH algorithm, as our experiments show, lies in the fact that
it generates too many useless windows that don’t contribute to any
shortest path. Over 99% of the windows created by the CH algo-
rithm can be abolished in many examples. So this article proposes
to improve the CH algorithm by implementing two new techniques.
The primary technique is to filter out useless windows using the
current estimates of the distances to the vertices, and the other tech-
nique is to maintain a priority queue like that achieved in Dijksgra’s
algorithm. Our experimental results suggest that the improved CH
algorithm, in spite of an O(n2 log n) asymptotic time complexity,
greatly outperforms the original CH algorithm in both time and
space. Furthermore, our algorithm generally runs faster than the
MMP algorithm and uses far less space.

The article is set out as follows. Section 2 gives some preparatory
lemmas. Section 3 describes the techniques of the improved CH
algorithm. We make comparisons among the CH algorithm, the
MMP algorithm, and the improved CH algorithm in Section 4 and
we draw conclusions in Section 5.

2. GEOMETRIC PRELIMINARIES

Let S be a triangulated polyhedral surface in R3, defined by a set
of faces, edges, and vertices. Assume that the surface S has n faces
and s is a vertex of the polyhedron. Our task is to compute a shortest
path from the source vertex s to any vertex t with the path restricted
on S. We first borrow a terminology from Mitchell et al. [1987].

A face sequence F is defined by a list of adjacent faces
f1, f2, . . . , fm+1 such that fi and fi+1 share a common edge ei ;
see Figure 1. We call the list of edges E = (e1, e2, . . . , em) an edge
sequence. Unless otherwise specified, the face sequences mentioned
later are all simple: the faces within a face sequence are different
from each other.

In studying the shortest path problem, a technique called planar
unfolding is often used. An edge sequence E = (e1, e2, . . . , em) is
unfolded in this way: rotate f1 around e1 until its plane coincides
with that of f2 ( f1 and f2 are kept on different sides of e1), rotate

s

t

e1

e2 em

f 1

f 2 f m

f m+1

Fig. 1. Definitions of the face sequence F and the edge sequence E . The
thick polyline denotes the shortest path from the point s to the point t re-
stricted on F , while the light-gray polygon denotes the boundary of F .

f1 and f2 around e2 until their plane coincides with that of f3, and
repeat the process until all the faces f1, f2, . . . , fm lie in the plane
of fm+1 .

Obviously, a globally shortest path is, without doubt, a geodesic.
More properties can be found in Sharir and Schorr [1986], Mount
[1984], and Chen and Han [1990]. For example, two shortest paths
from the same source cannot intersect each other except at the source
point or the destination point or a saddle vertex. For description of
the general form of a shortest path, we cite a lemma from Mitchell
et al. [1987].

LEMMA 2.1. The general form of a locally shortest path is a
path that goes through an alternating sequence of vertices and edge
sequences such that the unfolded image of the path along any edge
sequence is a straight line segment and both the angles of the path
passing through a vertex are greater than or equal to π . A globally
shortest path is a geodesic, and it has the additional property that
no edge can appear in more than one edge sequence and each edge
sequence must be simple.

Based on Lemma 2.1, we observe that a geodesic sequence �
consists of a sequence of edges and vertices, beginning with the
source s and ending with a vertex or an edge. Accordingly, we use
two types of windows to encode the geodesic sequence informa-
tion: pseudo-source windows and interval windows; see Figure 2.
If � ends with a vertex v , we simply use a pair (d, v) to denote the
key information, where d is the shortest distance from the source to
vertex v restricted on �. If � ends with an edge e, then the last vertex
r in � is defined to be the root. In the course of planar unfolding of
the edge sequence next to vertex r , rotations are required, inducing
a list of r ’s images {Ii }, among which the last image I is located on
the plane of edge e and the edge prior to e. In fact, the point set:

{p|p ∈ e, the shortest path from s to p can be unfolded into a

straight line segment},
is an interval [Sharir and Schorr 1986], say, [a, b]. Then we can use
a four-tuple (d, I, e, [a, b]) as an interval window w to encode the
key information, where d is the shortest distance from the source s
to the root r restricted on �, as is shown in Figure 2(b).

During window propagation, a pseudo-source window at a saddle
vertex v (the sum of the incident angles is greater than 2π ) or a
boundary vertex v can have children: an interval-window child on
each edge opposite to v and a pseudo-source-window child at each
vertex adjacent to v , while an interval window on edge e can have at
most 3 children: two interval-window children on the two edges next
to e and one pseudo-source-window child at the vertex opposite to e.
According to the parent-child relationships, we can build a sequence
tree T of an exponential size to contain the windows. Note that T
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Fig. 2. A pseudo-source window and an interval window.
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Fig. 3. The principle of one angle one split (see Lemma 2.2) implies that
only three of the four possible edge sequences in this example can pro-
vide shortest paths. The three green windows belong to edge sequences that
will continue, and the red one corresponds to an edge sequence that must
stop because the shortest paths that it contains cannot continue to pass this
triangle.

has at most n levels, where n is the total number of the faces. The CH
algorithm [Chen and Han 1990] avoids exponential explosion based
on the following Lemma 2.2, namely the property of “one angle one
split” [Chen and Han 1990]. In Figure 3, two windows w1, w2, are
entering �v1v2v from edge v1v2 and both cover the vertex v . “One
angle, one split” implies that at most one of w1, w2, can have two
interval-window children during window propagation. We say that
the two-child window occupies the angle � v1vv2 over the one-child
one. Of course, wi (i = 1, 2) can also have a pseudo-source-window
child at vertex v only if it can provide the shortest distance to v .

LEMMA 2.2. Let w1 and w2 be two windows on the same directed
edge v1v2 of �v1v2v, shown in Figure 3. If both of the windows cover
the vertex v, then at most one of them can have two children which
could be used to define a shortest sequence.

3. THE IMPROVED CH ALGORITHM

The CH algorithm [Chen and Han 1990] is of an O(n2) time
complexity, but in practice it runs very inefficiently, compared
with the O(n2 log n)-time MMP algorithm [Mitchell et al. 1987].
This is demonstrated by previous experimental results [Kaneva and
O’Rourke 2000; Surazhsky et al. 2005]. The inefficiency of the CH
algorithm, we think, is because it generates considerably many use-
less windows that don’t contribute to any shortest path. That is to
say, the key idea in Chen and Han [1990], “one angle one split,”
is still too loose to effectively check the validity of a new win-
dow. We will describe the CH algorithm in Section 3.1. Section
3.2 presents a filtering theorem for checking a new window more
strictly and Section 3.3 suggests that we should also maintain a pri-
ority queue throughout the algorithm. Finally, in Section 3.4 we

propose a method for backtracing a shortest path from the source to
any vertex, or even any surface point.

3.1 The CH Algorithm

We first need to conduct initialization: we set the distances at ver-
tices, except the source, to be +∞; then, we associate each angle
with a null interval window and associate each vertex with a null
pseudo-source window; finally, we introduce a first in first out queue
Q to store pending events.

ALGORITHM 3.1. The CH algorithm

Assign the source s with distance 0, create a pseudo-source win-
dow w for s, and put w into the queue Q;
While Q is not empty and the level size doesn’t exceed the face
number n

Take out the head window w from Q;
If w is a pseudo-source window, say, w = (d, v)

If d is less than the current distance estimate at vertex v
Update the distance at v;
If v is a saddle vertex

Delete the old pseudo-source window at v and its sub-
trees;
For each edge opposite to v , add a child window
(d, v, e, [0, 1]) onto the tail of Q;
Update the distance of each vertex v ′ incident to v with
w and add a pseudo-source window (d + ‖vv ′‖, v ′) to
Q if d + ‖vv ′‖ is less than the current distance at v ′;

Else /*w is an interval window, say, w := (d, I, e, [a, b]).*/
If w has only one child on the left (right) edge, or w fails
to occupy the opposite angle over the existing window w ′

according to Lemma 2.2, then
Compute the only child and push it into Q;

Else /*w occupies the opposite angle over w ′*/
Delete the abolished subtree of w ′;
Compute the two children of w and push them into Q;
Check if w can provide a shorter distance to the vertex v
opposite to edge e; if true, update the distance estimate at
v; and if v is a saddle vertex or a boundary vertex, we need
also generate a pseudo-source window at v and insert it
into the priority queue Q.

Chen and Han [1990] proved that the total number of nodes
generated—the abolished nodes included—is O(n2), rather than of
an exponential size. But in order to achieve an O(n) space complex-
ity, they suggested only storing leaf nodes and branch nodes, while
throwing away the one-child interval windows. So the sequence tree
of the CH algorithm is a conceptual object rather than a real one.
When a pseudo-source window wv at vertex v is occupied over by
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(a) d + ‖IB‖ > d1 + ‖v1B‖ (b) d + ‖IA‖ > d3 + ‖v3A‖

Fig. 4. Proof of Theorem 3.2.

another one, we need to delete the entire subtree rooted at wv . But
when an interval window w is occupied over, one of its subtrees
should be deleted, leaving the other subtree, say, rooted at window
w ′. At the same time, we should update window w ′’s parent to be w’s
parent. Finally, we delete one-child window w . At the conclusion
of Algorithm 3.1, the information encoded on vertices and angles is
enough for backtracing the shortest paths to vertices.

3.2 Checking Windows with the Distances to Vertices

As we mentioned, in spite of the low complexity in time and space,
the CH algorithm creates lots of useless windows. Therefore, the nat-
ural approach is to check new windows with a stricter rule. Consider
the situation in Figure 4. The window w = (d, I, e, AB) encodes
a set of shortest paths that enter the triangle through edge v1v3 and
exit within segment AB. Thus we have the following theorem.

THEOREM 3.2. Let w be a window that enters �v1v2v3 through
edge v1v3. Assume that d1, d2, d3 are respectively the minimum-so-
far distance at the three vertices v1, v2, v3. Then w can’t define a
shortest sequence if

d + ‖IB‖ > d1 + ‖v1 B‖,
or

d + ‖IA‖ > d2 + ‖v2 A‖,
or

d + ‖IA‖ > d3 + ‖v3 A‖.
PROOF. Let Hi denote the half-hyperboloid determined by the

equation:

‖pvi‖ + di = ‖pI‖ + d, i = 1, 2, 3.

First, we consider the situation d + ‖IB‖ > d1 + ‖v1 B‖; see
Figure 4(a). If d1 ≥ d , then v1 naturally lies in the interior of
the half-hyperboloid H1, where the interior is defined as the con-
vex part. Obviously, point B also lies in the interior of H1 if
d+‖IB‖ > d1+‖v1 B‖. Then the convexity ofH1’s interior induces
that segment v1 B lies entirely on the interior side of H1. Therefore
d +‖I p‖ > d1 +‖v1 p‖ holds for each p ∈ v1 B. If d1 < d, then v1

lies in the exterior ofH1. At the same time, d +‖IB‖ > d1 +‖v1 B‖
implies that B also lies in H1’s exterior. Since the ray from focus
v1 either intersects H1 at a unique point or fails to intersect H1,
segment v1 B must lie entirely on the exterior side of H1. Thus we

also have d + ‖I p‖ > d1 + ‖v1 p‖ for each p ∈ v1 B. Putting
them together, we conclude that w can’t define a shortest sequence
if d + ‖IB‖ > d1 + ‖v1 B‖. Similar arguments apply to the cases
of d + ‖IA‖ > d2 + ‖v2 A‖.

Next, we consider the situation d +‖IA‖ > d3 +‖v3 A‖ as shown
in Figure 4(b). The observation that the quadrilateral v1Iv3v2 is
convex shows −−→v1v2 • −→Iv3 > 0. So if the straight line v1v2 and the
line Iv3 have an intersection point p, then p must be to the left
of both segment v1v2 and segment Iv3 or to the right of them.
Then we define two points D1, D2 like this: let D1 (respectively,
D2) be just the intersection point p if p is to the left (respectively,
right) of segment v1v2 and otherwise be an infinite point on the
leftward (respectively, rightward) extension line of segment v1v2.
Since segment D1 D2 always lies on one side of the half-hyperboloid
H3’s axis of symmetry Iv3, it intersects H3 in at most one point.
Hence it can be inferred that point A and point D2 always lie on the
same side (interior or exterior) of H3 whether d3 ≥ d or d3 < d.
Therefore, for each point p ∈ AB, vertex v3 gives a shorter distance
than the image I does.

Summing up these two situations, we prove the theorem.

In this way, we can clip off the overwhelming majority of worth-
less windows created by the CH algorithm, and also avoid compu-
tation of further propagation for them.

3.3 Maintaining a Priority Queue

Recall that many shortest path algorithms, for example, Dijkstra
algorithm [Dijkstra 1959], the MMP algorithm [Mitchell et al. 1987]
and Fast Marching Method [Sethian 1999], maintain a priority queue
so that the nearest event can be handled first. To apply the paradigm,
we need to define a distance measure ‖ · ‖ for windows and ensure
‖w‖ ≤ ‖w ′‖ if w is a child of w ′. In fact, for a pseudo-source
window w = (d, v), we simply define ‖w‖ = d; and for an interval
window w = (d, I, e, [a, b]), the following definition is enough
(see Figure 5):

‖w‖ = d + min
p∈[a,b]

‖I p‖.

We can further prove that if the windows w1, w2, . . . , wk are ob-
tained one by one in the planar unfolding of a certain geodesic
sequence, then:

‖w1‖ ≤ ‖w2‖ ≤ · · · ≤ ‖wk‖.
ACM Transactions on Graphics, Vol. 28, No. 4, Article 104, Publication date: August 2009.
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Fig. 5. ‖w‖ = d + minp∈[a,b] ‖I p‖.

The CH algorithm performs window propagation level by level,
rather than from near to far. Since the “by distance” manner is more
compatible with the shortest path problem, maintaining a priority
queue hopefully further optimizes the CH algorithm. Experimental
results in Section 4 suggest maintaining a priority queue does further
improve the CH algorithm greatly in both time and space. In spite
of this, it must be noted that the theoretical asymptotic running
time of the improved algorithm becomes O(n2 log n) and the space
complexity cannot be proved to be still O(n).

3.4 Backtracing a Shortest Path from the Source to
Any Destination Point

At the conclusion of the CH algorithm, the information encoded on
vertices and angles is enough for backtracing the shortest paths to
vertices. Consider a vertex v , whose shortest distance may be given
by either an interval window occupying one of v’s incident angles
or a pseudo-source window occupying one of v’s incident vertices,
say, v ′. If the neighbor vertex v ′ provides the shortest distance, then
the shortest path to v consists of two parts: the shortest path to v ′

and segment v ′v . Otherwise, it is an interval window w on edge
e that provides the shortest distance. According to the source im-
age I encoded in window w and the position of vertex v , we can
easily compute the entering point p on edge e and the entering direc-
tion, which enables us to continue backtracing the shortest path, as
Figure 6 shows. Each shortest path will end with the source vertex s.

However, with some slight modification the information produced
by our algorithm can be used to find the shortest path to a point in
the interior of a triangle, using an idea similar to that proposed
by Surazhsky et al. [2005]. As is shown in Figure 7(a), for point
p ∈ f , they considered all windows on the three edges bounding
the face f , and minimize ‖p − p′‖+ D(p′) over all points p′ within
these windows. After we choose the best window, the backtracing
process can continue in the same way. However, Chen and Han
[1990] suggested throwing away those one-child interval windows
to ensure the O(n) space complexity, making it not informative to
compute the shortest path to a point in a face interior if we only
implement the first phase of the CH algorithm. So we suggest that
the one-child interval windows (useless windows excluded) should
be kept on the corresponding edges. Thus for a destination point
p ∈ f , we can also backtrace the shortest path in the same way.

Although we get different information at the conclusion of the
MMP algorithm and the improved CH algorithm, as Figure 7 shows,
both of the algorithms can be used to backtrace shortest paths to sur-
face points. In fact, for the improved CH algorithm, it is possible that
some directed edges are only partly covered by interval windows,
but the information is still enough to backtrace the shortest path to
any surface point. It is at the expense of more space. The correctness

I

e
v

p

Fig. 6. Backtracing shortest paths to vertices.

is based on two observations: (1) at the conclusion of the original CH
algorithm, each directed edge is covered by a list of interval windows
if we don’t abolish the one-child interval windows; furthermore,
these windows encode all shortest edge sequences; and (2) Theo-
rem 3.2 does nothing but filter out those totally useless windows.

As regards the complexity of backtracing a shortest path, whether
used with the MMP algorithm or the improved CH algorithm,
traversing the windows of a triangle might require O(n) time to
find the distance from a destination point p to the source s. This is
because a triangle, in either algorithm, might have O(n) windows
on its boundary. (Surazhsky et al. [2005] report that most triangles
seem to have O(

√
n) windows on average.) A complete implementa-

tion of either the CH algorithm or the MMP algorithm would give a
data structure that could report the distance from an arbitrary surface
point p to the source s in O(log n) time. But a complete implemen-
tation would probably be impractical and unnecessary. (Here we
must thank an anonymous referee who gave this accurate and acute
observation.)

4. EXPERIMENTAL RESULTS

In this section, we provide some experimental results. Our experi-
ments are made on an HP Compaq dc7800 computer with the fol-
lowing configuration:

—Intel(R) Core(TM)2 Duo CPU;
—E8400 @3.00GHz;
—2.99GHz, 2.98GB of RAM;
—Microsoft Windows XP Professional SP3.

In this research, we compare exact algorithms including

(1) the MMP algorithm [Mitchell et al. 1987] implemented by
Danil Kirsanov, one of the authors of Surazhsky et al. [2005]:
Note that Kirsanov’s code was not used for that paper;

(2) the original CH algorithm [Chen and Han 1990];
(3) the ICH1 algorithm: with the filtering theorem (Theorem 3.2)

to improve the CH algorithm;
(4) the ICH2 algorithm: further maintaining a priority queue.1

1The MMP implementation by Kirsanov is available at the following web-
site:
http://research.microsoft.com/en-us/um/people/hoppe/proj/geodesics/
default.htm
Our implementation of the other three algorithms, including CH, ICH1 and
ICH2, can be freely obtained at:
http://sites.google.com/site/xinshiqing/knowledge-share
We use some typical models as test objects from http://www.cs.
princeton.edu/gfx/proj/sugcon/models/ and http://www-static.cc.gatech.
edu/projects/large models/.
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possible that some edges are only partly covered by interval
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Fig. 7. Backtracing shortest paths to a surface point.

Fig. 8. Test models.
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Table I. Comparison Between Various Exact Shortest Path Algorithms on the Models of
Figure 8: ICH1 Denotes the Algorithm that Uses Only Theorem 3.2 to Improve Chen and

Han’s Algorithm; ICH2 is the Improved CH Algorithm that Implements Both of the
Techniques in Section 3; “Space” Indicates the Peak Memory Cost—the Storage of the
Model Itself Excluded—Used in Performing These Algorithms; “Windows” is Used to
Reduce the Total Number of Windows (Including Trimmed or Filtered Windows), and

“Levels” Represents the Maximum Depth of the Resulting Sequence Tree
Model Faces Algorithms Time (s) Space (M) Windows Levels

Torus 9,600

CH 281.23 0.81 401,536,708 9,600
MMP 0.39 13.18 318,893 166
ICH1 0.63 0.81 554,591 163
ICH2 0.27 0.15 246,123 163

Horse 96,964

CH 54,853.38 8.14 33,226,338,112 96,964
MMP 7.45 186.15 4,837,866 558
ICH1 32.226 8.14 19,528,130 512
ICH2 4.70 1.48 4,526,478 516

Bunny 144,046

CH - Unfinished in 24 hours - 144,046
MMP - 2 components; Kirsanov’s code fails to support -
ICH1 50.31 12.09 31,407,079 577
ICH2 6.97 2.20 6,853,459 577

Golfball 245,760

CH - Unfinished in 24 hours - 245,760
MMP 30.78 715.69 19,028,255 718
ICH1 193,547 20.63 87,500,689 700
ICH2 30.56 3.75 26,065,948 706

Lucy 525,814

CH - Unfinished in 24 hours - 525,814
MMP 28.05 724.04 18,808,447 1318
ICH1 417.00 44.13 170,308,953 1172
ICH2 18.39 8.02 17,424,771 1202

Blade 1,765,388

CH - Unfinished in 24 hours - 1,765,388
MMP - Out of memory -
ICH1 4,713.81 148.17 967,402,026 1760
ICH2 130.75 26.95 101,702,706 1812

Figure 8 illustrates shortest paths or isolines on these models.
The detailed experimental results can be seen in Table I, where the
performance indicators include:

Time (s): the time spent in window propagation;

Memory (M): the peak memory;

Windows: the total number of windows generated, deleted, or
trimmed; or filtered windows included;

Levels: the maximum depth of the sequence tree.

Our experimental results suggest that the improved CH algorithm,
in spite of an O(n2 log n) asymptotic time complexity, greatly out-
performs the original CH algorithm in both time and space. Fur-
thermore, it generally runs faster than the MMP algorithm and uses
considerably less space. We think that the main reasons why the im-
proved CH algorithm runs faster than the MMP algorithm are: (1)
the improved CH algorithm, with the filtering rule, generates con-
siderably fewer useless windows; generally speaking, the improved
CH algorithm and the MMP algorithm generate almost the same
amount of windows (both useful and useless windows included);
and (2) with either the original CH algorithm or the improved CH
algorithm, little computation is required when we perform window
propagation, while the MMP algorithm involves a complicated com-
putation (e.g., locating a window and trimming a window) during
window propagation. Furthermore, the improved CH algorithm has
an absolute advantage over the MMP algorithm since we follow
Chen and Han’s suggestion of throwing away one-child windows.

We also take notice that there are generally slightly more windows
created by the improved CH algorithm than those created by the
MMP algorithm. This is because we use only the three distance
values at the nearest vertices as a filter to check the validity of a new
window. Perhaps better checking rules will be available.

5. CONCLUSIONS

In this article, we discuss the “single source, any vertex” shortest
path problem. The main aim of this research is to show how to
filter out useless windows using the current estimates of the dis-
tances to the vertices, and, to explore another technique, involving
maintaining a priority queue. The improved CH algorithm greatly
outperforms the original version in both time and space, and even
runs faster than the MMP algorithm in far less space. Furthermore,
it can also be used to backtrace the shortest path from a source to
any surface point. We believe that the improved CH algorithm could
be a good choice for many applications in computer graphics.
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